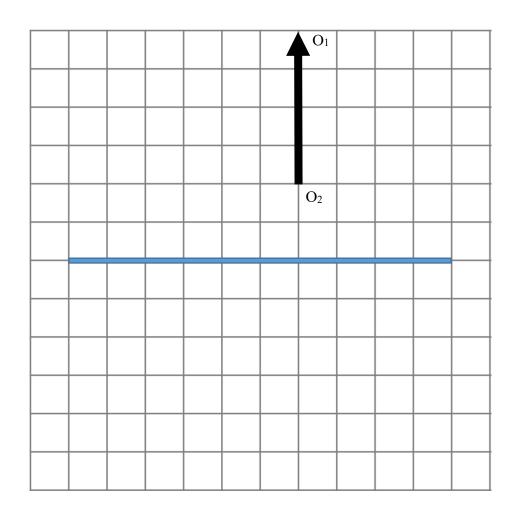
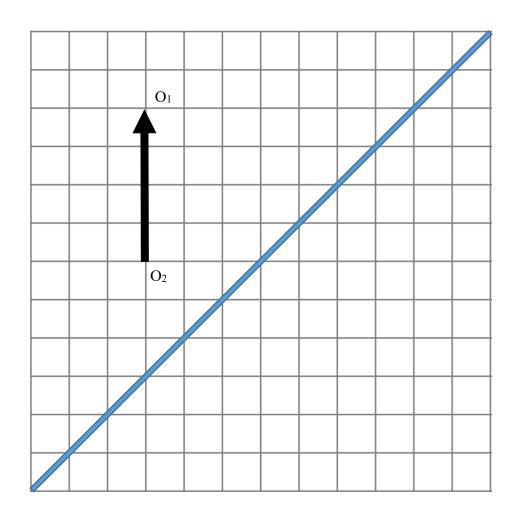

平面鏡成像

1. 知識重溫

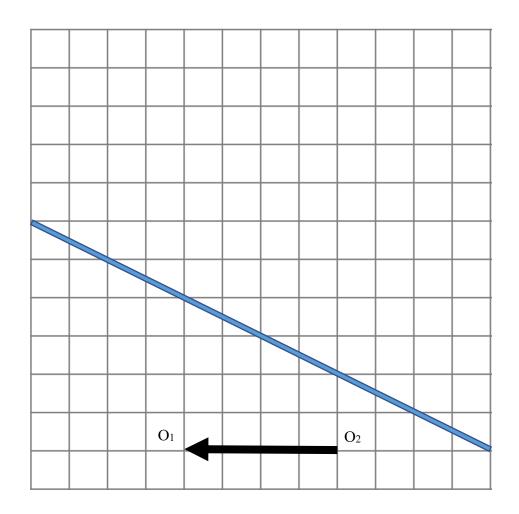

參考課本有關光的反射及平面鏡成像的學習內容,並回答以下問題:

- (a) (i) 應用平面鏡成像的性質,
 - (1) 找出 O₁ 物距和 I₁ 像距
 - (2) 找出 O₂物距和 I₂ 像距。
 - (ii) 在圖中以 I₁ 及 I₂ 標示物件 O₁ 及 O₂ 在平面鏡的成像。
 - (iii) 以虛線箭咀連接 I_1 及 I_2 ,以標示物件 O_1O_2 在平面鏡的成像。

O ₁ 物距 =單位		■平面鏡	物體
I ₁ 像距 =單位			•
O2 物距 =單位			
I ₂ 像距 =單位			


- (b) (i) 應用平面鏡成像的性質,找出:
 - (1) O₁物距和 I₁像距
 - (2) O2物距和 I2像距。
 - (ii) 在圖中以 I1 及 I2 標示物件 O1 及 O2 在平面鏡的成像。
 - (iii) 以虛線箭咀連接 I_1 及 I_2 ,以標示物件 O_1O_2 在平面鏡的成像。

O1 物距 =	單位	平面鏡 物體
I ₁ 像距 =	單位	
O2 物距 =	單位	
I ₂ 像距 =	單位	

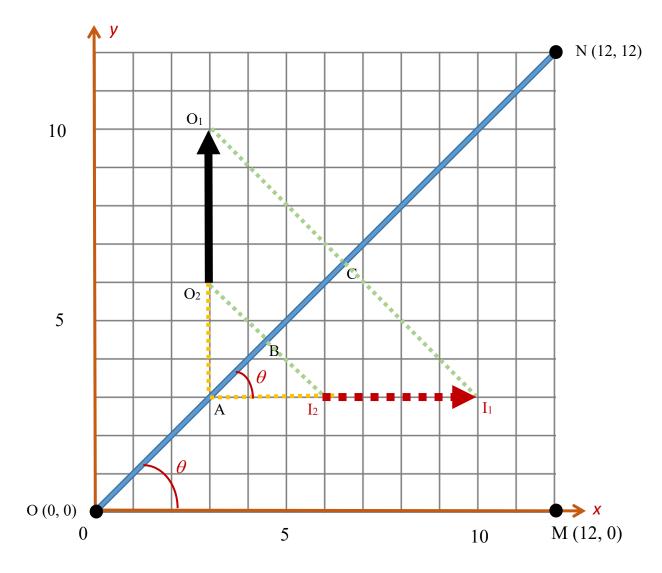

2. 應用平面鏡成像的性質,找出像的位置

- (a) (i) (1) 用間尺量度 O_1 物距和 O_2 物距,然後轉換為單位數目。
 - (2) 寫出 I₁ 像距和 I₂ 像距。
 - (ii) 在圖中以 I1 及 I2 標示物件 O1 及 O2 在平面鏡的成像。
 - (iii) 以虛線箭咀連接 I_1 及 I_2 ,以標示物件 O_1O_2 在平面鏡的成像。

Oı 物距 =	單位		
I ₁ 像距 =	單位		
O2 物距 =	單位		
I2 像距 =	單位		

- (b) (i) (1) 用間尺量度 O_1 物距和 O_2 物距,然後轉換為單位數目。
 - (2) 寫出 I₁ 像距和 I₂ 像距。
 - (ii) 在圖中以 I_1 及 I_2 標示物件 O_1 及 O_2 在平面鏡的成像。
 - (iii) 以虛線箭咀連接 I_1 及 I_2 ,以標示物件 O_1O_2 在平面鏡的成像。

O1 物距 =單位	平面鏡 物體
Iı 像距 =單位	•
O2 物距 =單位	
I ₂ 像距 =單位	


3. 應用數學知識,找出像的位置

(a) 如下圖:

O1O2標示物體,I1I2標示物體的像

O₁I₁垂直於 AC 及 O₁C=I₁C

O₂I₂垂直於 AC 及 O₂B=I₂B

(i) (1) 求 O₁ 物距和 I₁ 像距。(提示:考慮ΔACO₁)(例子)

平面鏡穿過 O(0,0) 及 N(12,12),平面鏡與正x軸交角 = θ 考慮由 O(0,0)、M(12,0) 及 N(12,12) 所形成的直角三角形

$$\tan\theta = \frac{12 - 0}{12 - 0}$$

$$\tan\theta = \frac{12}{12}$$

$$\theta$$
 = 45°

因為 O_1C 垂直於 AC 及 $\angle O_1AC = 90^\circ$ - $45^\circ = 45^\circ$ 所以

$$\sin \angle O_1 AC = \frac{O_1 C}{O_1 A}$$

$$\sin 45^{\circ} = \frac{O_1C}{7}$$

(亦可應用畢氏定理,找出 O₁C)

因為 $O_1C=I_1C$,所以 $I_1C=5.0$ (準確至 1 位小數)

$$O_1$$
 物距 = 5.0 單位 I_1 像距 = 5.0 單位

(2) 求 O₂物距和 I₂像距。(提示:考慮ΔABO₂)

(ii) (1) 求 I₁ 的 x 坐標和 y 坐標。(提示:找出 AI₁)(例子)

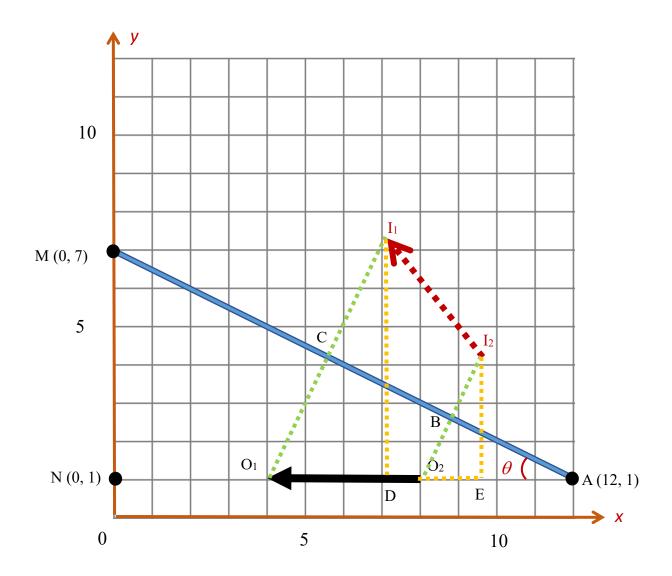
$$\angle CAI_1 = 45^\circ$$

 $\sin \angle CAI_1 = \frac{I_1C}{AI_1}$
 $\sin 45^\circ = \frac{4.95}{AI_1}$
 $AI_1 = 7.0$ (準確至 1 位小數)

(亦可應用全等三角形的判別條件(例如:SAS),證明 $\triangle O_1AC \cong \triangle I_1AC$,因此 $AI_1=AO_1$,即是 $AI_1=7$)

 I_1 的 x 坐標 = 3 + 7 = 10

因為 \angle $O_1AI_1=90^\circ$, AI_1 垂直於 AO_1 ,所以 I_1 的 y 坐標等於 A 的 y 坐標,即是, I_1 的 y 坐標是 3 。


- I_1 :
- x 坐標 = 10
- y 坐標 = 3
- (2) 求 I_2 的 x 坐標和 y 坐標。 (提示:找出 AI_2)

(b) 如下圖:

O₁O₂ 標示物體, I₁I₂ 標示物體的像

O₁I₁垂直於 AC 及 O₁A=I₁A

O₂I₂垂直於 AC 及 O₂B=I₂B

(i) (1) 求 O₁ 物距和 I₁ 像距。(提示:考慮ΔACO₁)(例子)

平面鏡穿過 M(0,7) 及 A(12,1),平面鏡與正 x 軸交角 = θ 考慮由 N(0,1)、M(0,7) 及 A(12,1) 所形成的直角三角形

8

$$\tan\theta = \frac{7-1}{12-0}$$

$$\tan\theta = \frac{6}{12}$$

 θ = 26.57° (準確至 2 位小數)

因為 O₁C 垂直於 AC 及 ∠O₁AC = 26.57° 所以

$$\sin \angle O_1 AC = \frac{O_1 C}{O_1 A}$$

$$\sin 26.57^{\circ} = \frac{0_{1}C}{8}$$

 $O_1C \approx 3.58$

= 3.6 (準確至1位小數)

因為 $O_1A=I_1A$,所以 $I_1C=3.6$ (準確至 1 位小數)

(2) 求 O_2 物距和 I_2 像距。(提示:考慮 ΔABO_2)

(ii) (1) 求 I_1 的 x 坐標和 y 坐標。(提示:找出 O_1D 及 I_1D)(例子)

考慮 △ACO₁

$$\angle AO_1C = 180^\circ - 90^\circ - 26.57^\circ$$
 (△內角和)
= 63.43°

考慮 △O₁I₁D

$$\sin \angle O_1 I_1 D = \frac{O_1 D}{O_1 I_1}$$

$$\sin 26.57^o = \frac{O_1 D}{3.58 \times 2}$$

O₁D = 3.2 (準確至1位小數)

$$\cos \angle O_1 I_1 D = \frac{I_1 D}{O_1 I_1}$$

$$\cos 26.57^o = \frac{I_1 D}{3.58 \times 2}$$

因此

I₁ 的
$$x$$
 坐標 = 4 + O₁D = 4 + 3.2 = 7.2

$$I_1$$
 的 y 坐標 = $1 + I_1D = 1 + 6.4 = 7.4$

I_1 :

(2) 求 I_2 的 x 坐標和 y 坐標。(提示:找出 O_2E 及 I_2E)